Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400796, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607275

RESUMO

Solar-driven interfacial evaporation (SDIE) is a highly promising approach to achieve sustainable desalination and tackle the global freshwater crisis. Despite advancements in this field, achieving balanced thermal localization and salt resistance remains a challenge. Herein, the study presents a 3D hierarchical porous ceramic platform for SDIE applications. The utilized alumina foam ceramics (AFCs) exhibit remarkable corrosion resistance and chemical stability, ensuring a prolonged operational lifespan in seawater or brines. The millimeter-scale air-filled pores in AFCs prevent thermal losses through conduction with bulk water, resulting in heat-localized interfaces. The hydrophilic nature of macroporous AFC skeletons facilitates rapid water replenishment on the evaporating surface for effective salt-resistant desalination. Benefiting from its self-radiation adsorption and side-assisted evaporation capabilities, the AFC-based evaporators exhibit high indoor evaporation rates of 2.99 and 3.54 kg m-2 h-1 under one-sided and three-sided illumination under 1.0 sun, respectively. The AFC-based evaporator maintains a high evaporation rate of ≈2.77 kg m-2 h-1 throughout the 21-day long-term test. Furthermore, it achieves a daily water productivity of ≈10.44 kg m-2 in outdoor operations. This work demonstrates the potential of 3D hierarchical porous ceramics in addressing the trade-off between heat localization and salt resistance, and contributes to the development of durable solar steam generators.

2.
Adv Sci (Weinh) ; : e2309834, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582503

RESUMO

Advanced ceramic materials and devices call for better reliability and damage tolerance. In addition to their strong bonding nature, there are examples demonstrating superior mechanical properties of nanostructure ceramics, such as damage-tolerant ceramic aerogels that can withstand high deformation without cracking and local plasticity in dense nanocrystalline ceramics. The recent progresses shall be reviewed in this perspective article. Three topics including highly elastic nano-fibrous ceramic aerogels, load-bearing nanoceramics with improved mechanical properties, and implementing machine learning-assisted simulations toolbox in understanding the relationship among structure, deformation mechanisms, and microstructure-properties shall be discussed. It is hoped that the perspectives present here can help the discovery, synthesis, and processing of future structural ceramic materials that are insensitive to processing flaws and local damages in service.

3.
ACS Omega ; 9(6): 7132-7142, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371767

RESUMO

The recovery of low-grade waste heat from power plants greatly benefits energy conservation and emission reduction during electricity generation, while the waste heat utilization directly from desulfurization slurry is a significantly promising method to deeply recover such low-grade energy and has been developed in practical application. However, the pipe materials are subjected to erosion and corrosion challenges due to the high level of solid compositions and the presence of harmful ions, such as Cl-1, which requires further evaluation under the condition of slurry heat exchange. The present study aimed at an experimental study on the erosion-corrosion characteristics of desulfurization slurry on three types of stainless steel, including type 304, 316L, and 2205. Both mass loss and micromorphology features were analyzed with possible mechanisms elucidated. The erosion-corrosion rate is weak at low temperatures, while the increase in the slurry temperature clearly promotes its rate. The influence of the temperature on the corrosion resistance of 304 is much greater than that of 2205. With an increase in duration time, the weight loss rate of stainless steel in the desulfurization slurry declines, and the changing trend of metal mass slightly slows down. The present study offers a better understanding of the erosion-corrosion behaviors of three types of stainless steel under flow and heat transfer conditions of a desulfurization slurry.

4.
Angew Chem Int Ed Engl ; 63(11): e202320036, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38191990

RESUMO

The striking aesthetic appeal of fullerene-like clusters has captured the interest of researchers. Nevertheless, the assembly of fullerene-like polyoxovadanadate (POV) cages remains a significant challenge due to the scarcity of suitable pentagonal motif. Herein, we have successfully synthesized the first fullerene-like all-inorganic POV cage, {(V2 O)V30 Nb12 O102 (H2 O)12 } (V30 Nb12 ), by introducing Nb into the POVs. V30 Nb12 is assembled by 12 heterometallic {(Nb)V5 } pentagons through sharing V centers with Ih symmetry, reminiscent of C60 . To our knowledge, the fullerene-like V30 Nb12 not only represents the highest-nuclearity POV cage but also stands as the first niobovanadate cluster. Notably, V30 Nb12 exhibits excellent solution stability, as confirmed by ESI-MS, FT-IR and UV/Vis spectra. As there is no protection organic ligand on its outer surface, V30 Nb12 can be further modified with Cu-complexes to form a fullerene-like cluster based zigzag chain (Cu-V30 Nb12 ).

5.
Nanomicro Lett ; 16(1): 82, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214786

RESUMO

Aqueous zinc-ion batteries are promising due to inherent safety, low cost, low toxicity, and high volumetric capacity. However, issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life. Here, we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion-strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation-can benefit the electrochemical stability by suppressing hydrogen evolution reaction, overpotential growth, and dendrite formation. Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose. It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation. Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm-2. Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6% capacity retention after 500 cycles at 1 A g-1. Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+ diffusion and deposition, highlyreversible Zn electrodes can be achieved as verified by the experimental results. Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries.

6.
Soft Robot ; 11(2): 230-243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37768717

RESUMO

Soft grippers with good passive compliance can effectively adapt to the shape of a target object and have better safe grasping performance than rigid grippers. However, for soft or fragile objects, passive compliance is insufficient to prevent grippers from crushing the target. Thus, to complete nondestructive grasping tasks, precision force sensing and control are immensely important for soft grippers. In this article, we proposed an online learning self-tuning nonlinearity impedance controller for a tactile self-sensing two-finger soft gripper so that its grasping force can be controlled accurately. For the soft gripper, its grasping force is sensed by a liquid lens-based optical tactile sensing unit that contains a self-sensing fingertip and a liquid lens module and has many advantages of a rapid response time (about 0.04 s), stable output, good sensitivity (>0.4985 V/N), resolution (0.03 N), linearity (R2 > 0.96), and low cost (power consumption: 5 mW, preparation cost

7.
Nat Commun ; 14(1): 8174, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071396

RESUMO

The deterministic creation and modification of domain walls in ferroelectric films have attracted broad interest due to their unprecedented potential as the active element in non-volatile memory, logic computation and energy-harvesting technologies. However, the correlation between charged and antiphase states, and their hybridization into a single domain wall still remain elusive. Here we demonstrate the facile fabrication of antiphase boundaries in BiFeO3 thin films using a He-ion implantation process. Cross-sectional electron microscopy, spectroscopy and piezoresponse force measurement reveal the creation of a continuous in-plane charged antiphase boundaries around the implanted depth and a variety of atomic bonding configurations at the antiphase interface, showing the atomically sharp 180° polarization reversal across the boundary. Therefore, this work not only inspires a domain-wall fabrication strategy using He-ion implantation, which is compatible with the wafer-scale patterning, but also provides atomic-scale structural insights for its future utilization in domain-wall nanoelectronics.

8.
Molecules ; 28(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764484

RESUMO

Developing robust and cost-effective electrocatalysts to boost hydrogen evolution reactions (HERs) and oxygen evolution reactions (OERs) is crucially important to electrocatalytic water splitting. Herein, bifunctional electrocatalysts, by coupling Co nanoparticles and N-doped carbon nanotubes/graphitic nanosheets (Co@NCNTs/NG), were successfully synthesized via facile high-temperature pyrolysis and evaluated for water splitting. The morphology and particle size of products were influenced by the precursor type of the cobalt source (cobalt oxide or cobalt nitrate). The pyrolysis product prepared using cobalt oxide as a cobalt source (Co@NCNTs/NG-1) exhibited the smaller particle size and higher specific surface area than that of the pyrolysis products prepared using cobalt nitrate as a cobalt source (Co@NCNTs/NG-2). Notably, Co@NCNTs/NG-1 displayed much lower potential -0.222 V vs. RHE for HER and 1.547 V vs. RHE for OER at the benchmark current density of 10 mA cm-2 than that of Co@NCNTs/NG-2, which indicates the higher bifunctional catalytic activities of Co@NCNTs/NG-1. The water-splitting device using Co@NCNTs/NG-1 as both an anode and cathode demonstrated a potential of 1.92 V to attain 10 mA cm-2 with outstanding stability for 100 h. This work provides a facile pyrolysis strategy to explore highly efficient and stable bifunctional electrocatalysts for water splitting.

9.
Artigo em Inglês | MEDLINE | ID: mdl-37394130

RESUMO

Ammonia is one of the most serious environmental stressors which severely affect fishery production. Ammonia toxicity to fish has a tight relationship with oxidative stress, inflammation and ferroptosis (a type of programmed cell death characterized by iron-dependent lipid peroxidation), but the temporal response of the above three in brain remains unclear. In the present study, yellow catfish were exposed to three concentrations of ammonia: low concentration (TA-N ˂ 0.01 mg L-1, LA), middle concentration (TA-N 5.70 mg L-1, MA), high concentration (TA-N 28.50 mg L-1, HA) for 96 h. Brain was selected as target tissues for analysis. Results showed that ammonia stress resulted in firstly increased contents of hydroxyl radical at 1 h, total iron at 12 h, malondialdehyde at 48 h, respectively, and decreased contents of GSH at 3 h. The initial high expression levels of ferroptosis (GPX4, system xc-, TFR1) and inflammatory-related factors (NF-ƙB p65, TNF, COX-2, and LOX-15B), antioxidant enzymes genes (SOD and CAT) were observed at first hour upon MA or HA stress. Combining all, it suggested that brain ferroptosis and inflammation were the first to be activated at the initial stage of ammonia stress, and then that provoked oxidative stress.


Assuntos
Peixes-Gato , Ferroptose , Animais , Amônia/toxicidade , Amônia/metabolismo , Peixes-Gato/metabolismo , Estresse Oxidativo , Inflamação/induzido quimicamente , Encéfalo
11.
Angew Chem Int Ed Engl ; 62(27): e202305099, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37129174

RESUMO

Garnet oxides such as Li6.4 La3 Zr1.4 Ta0.6 O12 (LLZTO) are promising solid electrolyte materials for all-solid-state lithium-metal batteries because of high ionic conductivity, low electronic leakage, and wide electrochemical stability window. While LLZTO has been frequently discussed to be stable against lithium metal anode, it is challenging to achieve and maintain good solid-on-solid wetting at the metal/ceramic interface in both processing and extended electrochemical cycling. Here we address the challenge by a powder-form magnesium nitride additive, which reacts with the lithium metal anode to produce well-dispersed lithium nitride. The in situ formed lithium nitride promotes reactive wetting at the Li/LLZTO interface, which lowers interfacial resistance, increases critical current density (CCD), and improves cycling stability of the electrochemical cells. The additive recipe has been diversified to titanium nitride, zirconium nitride, tantalum nitride, and niobium nitride, thus supporting the general concept of reactive dispersion-plus-wetting. Such a design can be extended to other solid-state devices for better functioning and extended cycle life.

12.
Biology (Basel) ; 12(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37106691

RESUMO

This study estimated the effect of substituting fishmeal completely with cottonseed protein concentrate (CPC) in the diet of sturgeon (Acipenser schrenckii) on growth, digestive physiology, and hepatic gene expression. A control diet containing fishmeal and an experimental diet based on CPC was designed. The study was conducted for 56 days in indoor recirculating aquaculture systems. The results showed that weight gain, feed efficiency, and whole-body essential amino acids (EAAs) all decreased significantly in the experimental group, while whole-body non-essential amino acids (NEAAs) and serum transaminase activity increased (p < 0.05). The activity of digestive enzymes in the mid-intestine was significantly reduced (p < 0.05), and liver histology revealed fatty infiltration of hepatocytes. The hepatic transcriptome revealed an upregulation of genes linked to metabolism, including steroid biosynthesis, pyruvate metabolism, fatty acid metabolism, and amino acid biosynthesis. These findings indicate that fully replacing fishmeal with CPC harms A. schrenckii growth and physiology. This study provides valuable data for the development of improved aquafeeds and the use of molecular methods to evaluate the diet performance of sturgeon.

13.
Front Nutr ; 10: 1008822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960199

RESUMO

This study aimed to investigate the effects of phenylalanine on the growth, digestive capacity, antioxidant capability, and intestinal health of triploid rainbow trout (Oncorhynchus mykiss) fed a low fish meal diet (15%). Five isonitrogenous and isoenergetic diets with different dietary phenylalanine levels (1.82, 2.03, 2.29, 2.64, and 3.01%) were fed to triplicate groups of 20 fish (initial mean body weight of 36.76 ± 3.13 g). The weight gain rate and specific growth rate were significantly lower (p < 0.05) in the 3.01% group. The trypsin activity in the 2.03% group was significantly higher than that in the control group (p < 0.05). Amylase activity peaked in the 2.64% treatment group. Serum superoxide dismutase, catalase, and lysozyme had the highest values in the 2.03% treatment group. Liver superoxide dismutase and catalase reached their maximum values in the 2.03% treatment group, and lysozyme had the highest value in the 2.29% treatment group. Malondialdehyde levels in both the liver and serum were at their lowest in the 2.29% treatment group. Interleukin factors IL-1ß and IL-6 both reached a minimum in the 2.03% group and were significantly lower than in the control group, while IL-10 reached a maximum in the 2.03% group (p < 0.05). The tight junction protein-related genes occludin, claudin-1, and ZO-1 all attained their highest levels in the 2.03% treatment group and were significantly higher compared to the control group (p < 0.05). The intestinal villi length and muscle layer thickness were also improved in the 2.03% group (p < 0.05). In conclusion, dietary phenylalanine effectively improved the growth, digestion, absorption capacity, antioxidant capacity, and intestinal health of O. mykiss. Using a quadratic curve model analysis based on WGR, the dietary phenylalanine requirement of triploid O. mykiss fed a low fish meal diet (15%) was 2.13%.

14.
Nanomaterials (Basel) ; 13(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36839083

RESUMO

Carbon-encapsulated transition metal catalysts have caught the interest of researchers in the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) due to their distinctive architectures and highly tunable electronic structures. In this work, we synthesized N-doped carbon encapsulated with CoNi nanoalloy particles (CoNi@NC) as the electrocatalysts. The metal-organic skeleton ZIF-67 nanocubes were first synthesized, and then Ni2+ ions were inserted to generate CoNi-ZIF precursors by a simple ion-exchange route, which was followed by pyrolysis and with urea for the introduction of nitrogen (N) at a low temperature to synthesize CoNi@NC composites. The results reveal that ZIF-67 pyrolysis can dope more N atoms in the carbon skeleton and that the pyrolysis temperature influences the ORR and OER performances. The sample prepared by CoNi@NC pyrolysis at 650 °C has a high N content (9.70%) and a large specific surface area (167 m2 g-1), with a positive ORR onset potential (Eonset) of 0.89 V vs. RHE and half-wave potential (E1/2) of 0.81 V vs. RHE in 0.1 M KOH, and the overpotential of the OER measured in 1 M KOH was only 286 mV at 10 mA cm-2. The highly efficient bifunctional ORR/OER electrocatalysts synthesized by this method can offer some insights into the design and synthesis of complex metal-organic frameworks (MOFs) hybrid structures and their derivatives as functional materials in energy storage.

15.
Biology (Basel) ; 12(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36829424

RESUMO

This study aimed to determine the effects of dietary sodium butyrate (NaB) on the growth and gut health of triploid Oncorhynchus mykiss juveniles (8.86 ± 0.36 g) fed a low fish meal diet for 8 weeks, including the inflammatory response, histomorphology, and the composition and functional prediction of microbiota. Five isonitrogenous and isoenergetic practical diets (15.00% fish meal and 21.60% soybean meal) were supplemented with 0.00% (G1), 0.10% (G2), 0.20% (G3), 0.30% (G4), and 0.40% NaB (G5), respectively. After the feeding trial, the mortality for G3 challenged with Aeromonas salmonicida for 7 days was lower than that for G1 and G5. The optimal NaB requirement for triploid O. mykiss based on weight gain rate (WGR) and the specific growth rate (SGR) was estimated to be 0.22% and 0.20%, respectively. The activities of intestinal digestive enzymes increased in fish fed a NaB diet compared to G1 (p < 0.05). G1 also showed obvious signs of inflammation, but this inflammation was significantly alleviated with dietary NaB supplementation. In comparison, G3 exhibited a more complete intestinal mucosal morphology. Dietary 0.20% NaB may play an anti-inflammatory role by inhibiting the NF-κB-P65 inflammatory signaling pathway. Additionally, the relative abundance of probiotics was altered by dietary NaB. In conclusion, dietary 0.20% NaB improved the intestinal health of triploid O. mykiss fed a low fish meal diet.

16.
J Colloid Interface Sci ; 633: 291-302, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36459934

RESUMO

Titanosilicate-1 zeolites (TS-1) as one of the most commonly used catalysts for alkene epoxidation, construction of hierarchical pores as well as elimination of anatase to promote mass transportation and avoid invalid decomposition of hydrogen peroxide are always desirable yet challenging goals. Here, a novel and unique Ti-based metal organic frameworks (MOFs)-induced synthetic strategy for fabricating anatase-free hierarchical TS-1 was first proposed. All the components of MOFs perform different functions: the uniformly distributed Ti nodes replace conventional tetrabutyl titanate (TBOT) to serve as sole Ti source for constructing zeolite crystal; the separated ligands can be embedded in the zeolite framework and act as template to in situ build hierarchical pore structure; the coordination interaction between Ti nodes and ligands can efficiently avoid the anatase generation by balancing the forming rates of Ti-OH and Si-OH. This synthetic strategy is of general applicability, and two different synthetic routes including traditional hydrothermal process and steam assisted crystallization (SAC) procedure are successfully adopted. The obtained hydrothermal TS-1 and SAC anatase-free samples all possess abundant intercrystalline mesopores of 20-50 nm and even macropores between 50 and 150 nm, improving the conversion over 25 % for 1­hexene epoxidation than TS-1 sample prepared by conventional route. The influences of the amount of Ti MOFs precursor and the crystallization process are studied in detail, and possible synthesis mechanisms are proposed. This MOFs-induced strategy might open up an avenue for the rational design of ideal and hierarchical zeolite to boost the catalytic efficiency.

18.
Inorg Chem ; 61(48): 19309-19318, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36383219

RESUMO

The primary challenge for efficient H2 evolution and hydrogen energy conversion is to develop highly active and stable catalysts with simple and reliable preparation processes. In this regard, we have designed and synthesized a porous carbon-supported low-Pt alloy catalyst (Pt3Co/Co@C composite) using ZIF-67 as a template. It showed uniformly dispersed Pt3Co/Co on the porous carbon layer due to the confinement effect of the porous carbon layer. Pt3Co/Co@C demonstrated excellent activity for the hydrogen evolution reaction in the full pH range, with an overpotential of 187 mV in 0.5 M H2SO4 to attain 100 mA/cm2 as well as long-term stability. It also displayed superior mass activity for the oxygen reduction reaction (ORR) at 0.85 V (vs RHE) compared to the commercial Pt/C. Furthermore, the Pt3Co/Co@C catalyst exclusively enabled a four-electron reaction process under ORR conditions without the competitive pathway to H2O2. The current work provides guidance for the design and facile synthesis of Pt-based catalysts with enhanced performance.

19.
ACS Appl Mater Interfaces ; 14(48): 53690-53701, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36404609

RESUMO

BiFeO3-BaTiO3 (BF-BT) dielectric ceramics are receiving more and more concern for advanced energy storage devices owing to their excellent ferroelectric properties and environmental sustainability. However, the energy density and efficiency are limited in spite of the large remanent polarization. Herein, we proposed a multiscale optimization strategy via a local compositional disorder with a Birich content and nanodomain engineering by introducing the Sr0.7Bi0.2Ca0.1TiO3 (SBCT) into BF-BT ceramics. Interestingly, an extraordinary energy storage property (ESP) with a high reversible energy storage density (Wrec) of ∼3.79 J/cm3 and an ultrahigh polarization discrepancy (ΔP) of ∼58.5 µC/cm2 were obtained in the SBCT-modified BF-BT ceramics under 160 kV/cm. The boosted ESP should be attributed to the fact that the replacement of A/B-sites cations could transform the long-range ferroelectric order of the BF-BT system into polar nanoregions (PNRs) along with the refined grain size, decreased leakage current, and broadened energy band gap. Moreover, good frequency (1-103 Hz) and temperature (25-125 °C) stabilities, high fatigue resistance (× 105), large power density (∼31.1 MW/cm3), and fast discharge time (∼97 ns) were also observed for the optimized ceramics. These results illustrate a potentially effective method for creating high ESP lead-free ceramics at a low electric field.

20.
RSC Adv ; 12(41): 26945-26952, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36320831

RESUMO

In this work, a luminescent metal-organic framework (Eu-MOF {[Eu6L6(µ3-OH)8(H2O)3]8·H2O} n ) was constructed by a solvothermal method with a linear organic ligand L (10-[(2-amino-4-carboxyl-phenyl)ethynyl]anthracene-9-carboxylic acid) based on anthracene and alkyne groups and using Eu3+ as the metal center. The MOF exhibits a stable UiO-66 crystal structure, and a six-core cluster twelve-linked secondary structural unit was successfully synthesized using 2-fluorobenzoic acid as a modulator, forming a classical fcu topology. Moreover, it exhibits good chemical stability. Interestingly, Eu-MOF exhibited high selectivity and sensitive fluorescence burst properties towards Fe3+ ions and 2,4,6-trinitrophenol (TNP) in DMF solution. For Fe3+, the K SV value is 5.06 × 105 M-1 and the LOD value is 5.1 × 10-7 M. For TNP, the K SV value is 1.92 × 104 M-1 and the LOD value is 1.93 × 10-6 M. In addition, Eu-MOF showed good anti-interference ability and fast response. This work provides an excellent fluorescent sensor for the detection of Fe3+ and 2,4,6-trinitrophenol (TNP) residues in contaminants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...